Chapter: Ensemble MLP Classifier Design
نویسنده
چکیده
Multi-layer perceptrons (MLP) make powerful classifiers that may provide superior performance compared with other classifiers, but are often criticized for the number of free parameters. Most commonly, parameters are set with the help of either a validation set or cross-validation techniques, but there is no guarantee that a pseudo-test set is representative. Further difficulties with MLPs include long training times and local minima. In this chapter, an ensemble of MLP classifiers is proposed to solve these problems. Parameter selection for optimal performance is performed using measures that correlate well with generalisation error.
منابع مشابه
Ensemble MLP Classifier Design
Multi-layer perceptrons (MLP) make powerful classifiers that may provide superior performance compared with other classifiers, but are often criticized for the number of free parameters. Most commonly, parameters are set with the help of either a validation set or crossvalidation techniques, but there is no guarantee that a pseudo-test set is representative. Further difficulties with MLPs inclu...
متن کاملEnsemble neural classifier design for face recognition
A method for tuning MLP learning parameters in an ensemble classifier framework is presented. No validation set or cross-validation technique is required to optimize parameters for generalisability. In this paper, the technique is applied to face recognition using Error-Correcting Output Coding strategy to solve multiclass problems.
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملA Preprocessing Technique to Investigate the Stability of Multi-Objective Heuristic Ensemble Classifiers
Background and Objectives: According to the random nature of heuristic algorithms, stability analysis of heuristic ensemble classifiers has particular importance. Methods: The novelty of this paper is using a statistical method consists of Plackett-Burman design, and Taguchi for the first time to specify not only important parameters, but also optimal levels for them. Minitab and Design Expert ...
متن کامل